
RD-IR150 93 SCHUR-OSTROWSKI THEOREMS FOR FUNCTIONLS ON LL(1)(U) 
11

FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS
W CHAN ET AL. AUG 84 FSU-STATISTICS-M684

UNCLASSIFIED AFOSR-TR-84-1245 F4962092-K-080? F/6 12/1 N

NON.E.hhhhf



o,~

..

1111 1.0 E 12

I I m

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

.4

iiI



IIOSR.TR- 8 4 -124 5

SCHUR-OSTROWSKI THEOREMS FOR FINCTIONALS ON L (0,I)

by

Wai Chan*, Frank Proschan, and Jayaram Sethuraman*

In
FSU Statistics Report No. M684

USARO Technical Report No. D-69
I AFOSR Technical Report No. 84-171

August, 1984

The Florida State University
Department of Statistics Dk

Tallahassee, Florida 32306 ELECTE:SFEB 138MO'

Research supported by the Air Force Office of Scientific Research, System

Commazd, USAF, under Grant nuamber AN82-K-007.

*Research supported by the U.S. Army Research Office under Grant number

The Gis overnmenlt is authorized to reproduce and distribute reprints for

,otrnmcntaI purposes notwithstanding any copyright notation thereon.

Kc Words ,ind phrases: Inequalities, majorization, Ntuirhead's Theorem,
.ik~km'in symmtric distributions, rearrangement, Schur functions,

* ',hjr-o)trow'.ki's Theorem.

AVC (198) Sujec Classifications: 26DI0; 60EIS disrvebft'i 1 2



. UNCASSIFIED,
SECURITY CLASSIFICAT ION Of TH .PAGE

REPORT DOCUMENTATION PAGE
* in REPORT SECURITY' CLASSIFICATION 1b. RESTRICTIVE MARKINGS

* UNCLASSIFIED _____________________

2. SECURITY. CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITV Of REPORT

__________________________________Approved for public release; distribution
Of DCLASSIPICATION/OOWNGRADING SCHEDOULE unlimited.

-- a PERFORMING ORGANIZATION REPORT NUMSERIS) S. MONITORING ORGANIZATION REPORT NUMSE'Is'
* FSU Statistics Report No. M684! USARO TR AFOSR-TRU 8 4 - 1 245

No. D-69; AFOSR TR No. 84-171.
Go NAME OF PERFORM ORAIATIO 10 0 OFFICE SYMBOL 7. NAME OP MONITORING ORIGANIZATION

Florida State University I~.~~
Air Force Office of Scientific Research

fi. ADDRESS (City. State .ind ZIP Code, b ADDRESS (city. State and ZIP Code,
Dept of Statistics Directorate of Mathematical & Information
Tallahassee FL 32306 Sciences, Boiling AFB DC 20332-6448

So. NAME OF FUNOING/SPONSORING BbOFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if etwurble,

AFOSR r NM F4 9620-82-K-0007
Jllct ADDRESS (City. State and ZIP Code; 10 SOURCE OF FUNDING NdOS.

PROGRAM PROjECT TASK OKUI

ELE ME NT NO. NO. No. NO

Bolling AFB DC 20332-6448 61102F 2304 A OKUI

11. TITLE (Include Security Ctauafweegsonj

SCHUR-OSTRO14SKI THEOREMS FOR FUNCTIONALS ON LIC0.1)
12. PERSONAL AUTI4OR(Sj

WJai Chan, Frank Proschan and Jayaram Sethuraman
13&. TYPE OF REPORT 13b. TIME COVERED 1a. DATE OF REPORT (Yr.. N.. Deyj 15. PAGE COUNT

Technical FROM __ TO _ 1__UG_4_2

16. SUPPLEMENTARY NOTATION
W. Chan and J. Sethuraman were supported by the U.S. Army Research Office under Grant

* DAAG 29-82-K-0168.

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neceunry and identify by 6loch numberj

-A ~ Schur-Ostrowski' s Theorem.3'
9. AUSTRACT (Con tinue on reverse ifinecea.ry and identify by bloch number)
h;ardy, Littlewood and Polya (19314) introduced the partial ordering of majorization among

1n-dimensional real vectors. Many well known ineqtalities can be recast as the statement
that certain functions are increasing with respect to this ordering. Such functions are

* said to be Schur-convex. An important result in the theory of majorization is the Schur-
Ostrowski Theorem, which characterizes Schur-convex functions. The concept of majorization

has been extended to elements of .(O,l) by Ryff (1963). A functional on L 1 (0,1) that is

increasing with respect to the ordering of majorization is said to be Schur-convex. In
this paper, the authors prove an analogue of the Schur-Ostrowski condition which character-
izes Schur-convex functionals in terms of their Gateaux differentials. They also introduce
another partial ordering in L 1(0,1) called unrestricted majorization. This partial ordering

is similar to majorization but does not involve the use of decreasing rearrangements. The

authors establish a characterization of non-decreasing functionals on-tCNTINUED)
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATIOA"

UNCLASSIFIED/UNLIMITEO C SAME AS APT. 0 OTIC USERS 0 UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFF ICE SYMBOL

MAJ Brian W. Woodruff (0)77 07N

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE



UNCLASSIFIED

SECURIY CLASSIFICATION OF THIS PACE d.?

ITEM #19, ABSTRACT, CONTINUED: L (0,1) with respect to the partial ordering of unrestricte

majorization through another analogue of the Schur-Ostrowski condition.

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS3 PAGE



Schur-Ostrowski Theorems for Functionals on 1 (Ol)

by

Wai Chan, Frank Proschan, and Jayaram Sethuraman

ABSTRACT -

Hardy, Littlewood and Polya (1934) introduced the partial

ordering of majorization among n-dimensional real vectors. Many

well known inequalities can be recast as the statement that certain

functions are increasing with respect to this ordering. Such

functions are said to be Schur-convex. An important result in the

theory of majorization is the Schur-Ostrowski Theorem, which char-

acterizes Schur-convex functions. The concept of majorization has .-

been extended to elements of Ll(Ol) by Ryff (1963). A functional

on L1 (0,1) that is increasing with respect to the ordering of

majorization is said to be Schur-convex. In this paper, we prove

an analogue of the Schur-Ostrowski condition which characterizes

Schur-convex functionals in terms of their Giteaux differentials.

We also introduce another partial ordering in L(0,1) called

unrestricted majorization. This partial ordering is similar to

majorization but does not involve the use of decreasing rearrange-

ments. We establish a characterization of non-decreasing functionals

on L(OI) with respect to the partial ordering of unrestricted

majorization through another & Me of the Schur-Ostrowski condition.

D l ..t•ib,',

VA THIEN J. ;c:
Cbif, T*@ xjr)loal 112f .' flton Dtvisio-

*- ,.,' °% .. °*- . *. "* "°"' - - * '=. ae
m

* ... §§j.:::. ,"°.- *' *°= *" ' ' " **")*"'* *"' "" "' ' '-' ' **°""°' ""* " * '



1. Introduction.

Hardy, Littlewood and Poaya (1934) introduced the following

partial order in n-dimensional Euclidean spaces: a n-vector x= (x.... **xn)

m
majorizes y (yl".",yn) (x y in symbols), whenever

k k
x y, k= 1, n- 1

and
n n

)i x Yi ,1 1

where x*, are the vectors obtained from x and X by rearranging

their components in decreasing order.

This partial order has been extended to elements of LI(O,1) by

Ryff (1963) and is given in Definition 1.2 below. Before giving this

definition, we develop some notation to be used in defining a decreasing

rearrangement of a function. Let x be a measurable, real valued function

on (0,1) and m be the Lebesgue measure. For each x, one can associate

a function dx on (-o,) defined by

d (s) = m({t: x(t) > s}), < S < OD.

This function dx, called the distribution function of x, is non-increasing

and right continuous. Two functions x and y are said to be equivalent in

distribution if dx  d . The right continuous inverse of dx , denoted x*,

is defined by

x*(t) inf {s: dxLs) t).

The function x*, which is non-increasing, right continuous and has the

same distribution function as x, is called the decreasing rearrangement

of x. The functions x and x* are simultaneously integrable (or non-

integrable), and their integrals are related by

--. .
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S S

J x*(t)dt f f x(t)dt 0 - s < 1,
0 0

and

f x*(t)dt = f x(t)dt.
o 0

The following theorem due to Ryff (1970) shows that by composing

the decreasing rearrangement of a function with a measure preserving

transformation, one can recover the original function.

1.1. Theorem. To each x E LI(0,1), there corresponds a measure pre-
1

serving transformation a: (0,1)-.(0,I) such that x(t)= x*[o(t)],

where a is defined by

a(s) = m{t: x(t) > x(s)) + m{t - s: x(t) = x(s))

The definition of the partial ordering of majorization of elements

in L1(0,1), due to Ryff (1963), is given below.

1.2. Definition. Let x, yE L1 (0,1). We say that x majorizes y,

m
(x - y in symbols) if

s s
f x*(t)dt f y*(t)dt, 0 s < 1,
0 0

and
1 1 ./

f x(t)dt = f y(t)dt,
0 0

where x* and y* are the decreasing rearrangements of x and y, respectively.

Several authors [see, eg. Day (1973), Chong (1976)] have obtained

interesting results using this partial ordering. It is also related to the

variability ordering of Ross (1982).

By removing the rearrangement requirement in Definition 1.2, we

obtain a different ordering called unrestricted majorization, as defined

below.

A 3 .k .
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1.3. Definition. Let x, y E L(0,1). We say that x dominates y in

the ordering of unrestricted majorization, (x y in symbols), if

s s
f x(t)dt > f y(t)dt, 0 s < 1
0 0

and 1 1

f x(t)dt = f y(t)dt.
0 0

The ordering of unrestricted majorization as applied to the

class of density functions leads to the usual stochastic ordering

as seen below:

Let X and Y be random variables on (0,1) with densities f and
5 5

g respectively. If f g, then f f f J g for all 0 < s < 1, or
0 0

P(X _ s) a P(Y 2 s). Thus the condition X <- Y is equivalent to

Ij

f g g.

Many inequalities that arise from majorization in the finite dimen-

sional case can be extended for elements of L (0,1). Ryff (1967)

proved the following analogue of Muirhead's inequality.

1.4. Theorem. Let x and y be bounded measurable functions on (0,1).

m
If x - y and u is a positive function such that u c L (0,1) for all

S 1 x(s) I
p, -0 < p < -, then f log[f u(tX dt]ds a f log~f u(tlY(Sldtlds.

0 0 0 0 M
Conversely, if the inequality holds for all such u, then x >- y.

In the discrete case, Muirhead's inequality can be reformulated

by identifying an appropriate function which preserves the ordering

of majorization. Such functions are said to be Schur-convex. Schur

*. (1923) and Ostrowski (1952) gave necessary and sufficient conditions

... . ..- -:
" -, : : . . . . . . . . . . . - . , . , . . . .. . . . . . - . . . . . _ . - . . . . . . . . . - . - - - . ,
".- *i*;**-**-,- - - --" -..•. .-"."".-"'-"" -*'""
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for a function to be Schur-convex in terms of their partial deriva-

tives. We quote from Marshall and 01kin (1979) about the importance

of this result, "it is difficult to overemphasize the usefulness of

the (Schur-Ostrowski) condition,...., many or even most of the

theorems giving Schur-convexity were first discovered by checking

(the Schur-Ostrowski condition)." In the next section, we will

present an analogue of this result for Schur-convex functionals on

L,,(0,1). This result, given in Theorem 2.9, is then used to charac-

terize Schur-convex functionals on L1 (O,1). We also characterize

non-decreasing functionals on L1 (O,) with respect to the partial

ordering of unrestricted majorization through another analogue of

the Schur-Ostrowski condition. These results will be used to prove

the generalized Muirhead's Theorem (Proschan and Sethuraman, 1976)

in Section 3. An application to peakedness comparisons of distributions

is discussed in Section 3.

2. Main Theorems.

We first proceed with some definitions.

2.1. Definition. A functional ' defined on a set A = L1(0 ,1) is

m
said to be Schur-convex on A if yl, Y2  Y A and y1 

- y2 imply that

(yl >- *(y2).

A Schur-convex functional is necessarily constant over functicas

that are equivalent in distribution. Thus for a Schur-convex

functional 0, the value O(x) depends only on the distribution

function of x. A set A is said to be invariant if x A and x and

y are equivalent in distribution imply that y ( A. Henceforth, we

shall only consider Schur-convex functionals on an invariant set.

For a characterization of Schur-convex functionals, we need

the following notion of directional derivative.

. . ....
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2.2. Definition. Let € be functional defined on a convex set

A S L (0,1). Let y E A and h be such that y + eh E A for all sufficiently

small 6. The Giteaux differential of € at y in the direction of h is

defined to be

y = l m (y+eh) - (y)
Dh 0-0 -

if the limit exists.

Note that y) is simply the derivative, at 0 0, of the real

valued function on [0,1] defined by i(0) = (y+eh).

Let V be the class of decreasing functions in L (0,1), let D.

be the class of decreasing functions in L.(0,1). Let

TI= {h: h=XlI(a,b) + 2I(c,d)' where O<-a<b<c<d-l, -O-X2 ,

A1 (b-a) + A 2 (d-c) = 0}. The class T consists of step functions h

which take at most two non-zero values, are decreasing on its support

1 m
and satisfy J h(t)dt = 0. Note that h c T implies h 0.

0

Let y E D and h E T. Then y + h need not be decreasing. However,
1
m

we have y + h 2- y, as given in the next lemma.

m
2.3 Lemma. Let y E 1 and h E T, then y + h - y.

Proof.

Note that
S S

J (y+h)* -f (y+h)
0 0

f y* f h
0 0

S
L f y*-, 0 s< 1

0

* .. .-...
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and 1 1 1 1

S(yh = f y f h f y.
0 0 0 0

m
Hence, y + h ? y. I.

In the following Theorem, we give a necessary condition for

functionals increasing in the ordering of unrestricted majorization.

2.4. Theorem. Let A be an open subset of LI(0,1). Let * be a
functional defined on A such that € is non-decreasing with respect

to the ordering of unrestricted majorization. Let y c A and h c T.
-(y(0

Suppose that the GAteaux differential L(y) exists. Then -(y) 0.

Proof.

Since A is open, y + Oh c A for all sufficiently small 6. Thus

for all sufficiently small positive e, y Oh and y are elements of

A and y+ Oh y. This implies that

*(y+Oh) > 4(y)

and

-(y) =in l -(y+eh) - (y)

a 0.0

Next, we consider Schur-convex functionals defined on an

invariant set A.

2.5. Theorem. Let A be an open invariant subset of L1 (0,1). Let

• be a Schur-convex functional defined on A. Let y e D. n A and

h c T. Suppose that the Giteaux differential (y) exists. Then

2()2 0.

*add
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Proof.

Since A is open, y+ Oh c A for all sufficiently small 6.

Furthermore, for sufficiently small positive 6, y +eh y from

Lemma 2.3. Hence *(y+Gh) k *(y) and

a(y) lim .~[(y+ 6h) -(Y

2! 0. J

To show that this condition is also sufficient, which is the

content of the main theorem, Theorem 2.10 of this section, we need

the following lemmas.

2.6. Lemtma. Let A be a convex subset of L (0,l). Let *be a

funciona defined on an open set containing A. Let ~--(y) ! 0 for

y EA and h ET. Theny, Y2 E Aand Y2  y E T implythat

Proof.

Let h =Y 2 -yl c T. For 0 c [0,11, define

ye yl e(y2-yl) O + (1-O)yl,

and

P(6) ~(ye).

Note that y.is in A. Now,

d1
0(0 lim -[(O(0c) *- )

=lim 4 (y,+ch) -fY)

a 0 for 0 5 5 .
ah6

. .. .. ... .................
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Hence,

1

0

f --(y )dO 0
0

In the next lemma, we show that if yl, Y2 are step functions

such that Y2 Y Yl, then Y2 -Yl can be written as the sum of

functions in T.

2.7. Lemma. Let yl, Y2 be step functions on (0,1) such that

Y2 Y* Then there exist hI, ..., hN in T such that

N
(2.1) Y2 = + hi"

i i=l --

Proof. There is nothing to prove if yl = Y2 "

Let yl g Y2 " Since yl and Y2 are step functions, there is an

integer n > 2, such that

n
Y2 (t) - yl(t) = ail (c (t) where a. i 0,Si=l 1c'i

(ci,di) are disjoint intervals and 0 -c I < d < ... < c < d < 1.
11n n

Note that Y2  y I implies that a1 > 0 and an < 0. We will prove

that (2.1) holds with N s n-l, by an induction on n.

Note that the lemma is immediate when n = 2. Assume that the

lemma is true for n = 2, ... , k-l. We will now prove that the lemma

•.........................*. D •,•°• -°°°• .... .-.......... ...
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holds for n = k. Let a. be the first negative term such that eitherJ

a. 0 or j = k. Define a function in T byJ+l

h =alI + aI
1 (c1,c,) + (d-,d.)'

where c' -< dI and d' c. are chosen so that al(cl-cl) + a(d.-d) = 0

and one of the following holds:

1) ci = d, and d' = c if al(dl-C + a(d- = 0,

2) c' < d and d' = c if a* a(dj-c) > 0,

3) c = d1 and dj > c. if a1(d-c 1  + aj(d j- c < 0.

We will now establish that Y +Ylh by showing that
s

f (y2-yl-h) 2 0 for all 0 < s 1. Note that h 0 on the interval
0
(d. ,1). s 1s

Let s > d., then f h =f h =0. Thus,
3 0 0

S S.

f (y2-ylh) f (Y2-yl) 0.
0 0

Let 0 < s 5 d.. Then either Y2 (t) yl(t) Z 0 for all3

0 < t < s or Y2(t) - yl(t) < 0 for all s < t 5 d., since there is

only one sign change among al, ... , aj and the sign changes from

positive to negative. Note that h agrees with Y2 - Yl on the

intervals (clc) and (d,d.), and that h is identically zero

outside these intervals.
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If 2 (t -yl(t) 2t 0 for all 0 < t < s, then - h 0

on the interval (0,s). This implies that

f (y2-yl -h) 0.
0

If y 2 (t) -y 1(t M 0 for all s < t < d, then Y2  YI h 0

on the interval (s~d.). This implies that

d.

f (y2-y1-h jy 2-y1-h

d.

= ;(y2_y1)0

t0.

Hence we have )'2 y y1 +h Since -2 - sasepfnto

which takes at most k-l nonzero values, it follows from the
N

induction hypothesis that y2 -l - h = h' where h' c T for

i =1, .. ,N, and N :5 k-2. This completes the proof. I

In Lemma 2.7, if we assume that )'' )'2 are decreasing step

functions, then the condition y y is equivalent to ' In
N-1

addition, we can choose yl+h,, yl+hl.h2  . .. , y h. to be de-

creasing functions as shown in the following lemma.

2.8. Lemma. Let yl, y2 be decreasing step functions on (0,1) such

that y2 2ty,- Then there exist h,, ... , h N in T such that



N

and

N-1
ii) y+hl, ... p yl+ h are decreasing functions.

Proof.

Define h a ~I (pc + a (Io as in the proof of Lemma

2.7. We need to show that y 1 +h is decreasing. Note that

2 (t) if 0 < t < cj

N-1

Y 1(t) h ) (t))
Y2 (t) if d: < t - d.,

2 Jt

Yl(t) if d.5<t < 1.

Since a >0 , yl + h is decreasing on a neighborhood of c1 .

Similarly, a. < 0 implies that yl + h is decreasing on a neighborhood

of d'. Suppose that d. < 1, then the choice of a. indicates thatJ 3 3

for c > 0 sufficiently small, y2  y1 a 0 on (d., dj+C). Since

Yl + h =Y2 on (d ,d.], it follows that yl +h is decreasing on the

interval (dr, d+C). Thus Yl h is decreasing on the interval (0,1).

Note that h c T implies yl h l Yl" Since yl+h, y, are de-

creasing functions, this is equivalent to y, h a yl. Following ...

the same induction argument as in Lemma 2.7, we conclude that -

N
there exist hit . -.., h in T such that y2 = Yl + h + ) h. and that

N-I i=l
Yl+h+hl , ...,ylh+ h. are decreasing functions. This proves thei=li"

lemma. I

" .. . .

"•. ** .- .• .* .. '- .', . .. ° .•- - . . - -, ' -. . • -. . . . . . . .o ' °. . ° .... '. .% .. . . . - . 2..- a %-.o.
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In the next theorem, we give a sufficient condition for a

functional of L ,(0,1) to be Schur-convex.

2.9. Theorem. Let A be an invariant open convex subset of L,,(0,1).

Let * be a continuous functional defined on A such that 0 is constant

over functions that are equivalent in distribution. If the Gfiteaux

differential 20y t0 for each y E D~ n A and h cET, then * is

Schur-convex on A.

Proof.

Since * is constant over functions that are equivalent in

distribution, it suffices to prove that * is Schur-convex on D n A.

Let yl, y2 c D.0 n A be right continuous and y. y1 . Let c>0

be arbitrary. Then for i = 1, 2, the sets (t: y, (t-) - y(t) > E are

finite, where y.(t0) =inf y.(t). Hence there exists a partition

0 < a < <. <an < 1such that

Y1(a) k yi(a k~l) < c, i =1, 2; k =1, .. ,n-i.

Define

Y ( +) LYi(s)dsll (Oa t

n1 0 ___ 1
k-la lk L1li's Iaakl)(t

+ f F d s I (t) ,2

1a L Yi(s)d] I[an'l t), ,2

.......om.. . . . .. . . . .
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Then Yl, Y2 are decreasing step functions satisfying

a: ak

f yic(s)ds = Yi W(s)ds for k = 1, ... , n. This implies YlC
0 0

Since A is open and IlYi-Yicll. < c, for sufficiently small positive

, >lc'2c are in A.

N
By Lemma 2.8, Y2t-Ic= h. for some (hi.... h T,

Ni i=l 1 "' N.
N-1

where yic+hl ..... yl h. are decreasing functions. The functions

N-I1
ylchl... , yl h. need not be elements of A. Since A is open,i.. 1 N

N

for sufficiently small positive 0, ylOhl, ... y 1 +0 h. are
i I

decreasing functions in A satisfying

N N-1• :yl+ 1hm yl+il i  m
. > y +0 h ... It now follows from Lemma 2.6

N N-1
that (ylc+ ihi) t *(yl+0 . hi) 2 ... (y ). Next, we shall

i=1 i'l

show that this implies 0(y2 ) 0(y1c). Note that we have just

N
demonstrated that the set 0 = {0<0 < I: *(ylC+O hi) > yl)} is

non-empty. Let 0 = sup{0: 4E 0}. Since is continuous, we have

N
(Ylc + I h 0 ) > *(yl ), which shows that 00 c 0. Now suppose

0 < 1. The preceding arguments show that for sufficiently small

0
N N N

positive r, +lc 0 0 h. + rh1, -* +0 !l hir hi arei=l il i=l.

decreasing functions in A and satisfy

N N
('.' +(Y 0 hi) *(y +00 h ..+-+00 .h. +rhI) -<..

i"'"l i=l :
N N

- 0(yi€+8 0  h. h+r I hi) Thus OO +r e 0, which provides a

,..,.,, -..-::::-................. ... . . . ... , ........ .. . . ....



14

contradiction to the assumption that 00 < 1. We therefore conclude

that 00 I and thus, ( > *y) "

Since the functional is continuous with respect to L O -norm,

we conclude that *(y2) a *(yl) by letting c - 0. 0 J

We now use this theorem to establish a sufficient condition

for Schur-convex functional of L1 (0,l).

2.10. Theorem. Let A be an invariant open convex subset of LI(0,I).

Let 0 be a continuous functional defined on A such that 0 is constant

over functions that are equivalent in distribution. If the GAteaux

differential T(y) > 0 for each y c V n A and h c T, then * is

Schur-convex on A.

Proof.

Since * is constant over functions that are equivalent in

distribution, it suffices to prove that * is Schur-convex on D n A.
Let Y, Y2 E Pl n A be right continuous and Y2  y. Let £ > 0

be arbitrary, then 6 > 0 such that
--.

6 1

f y (t)Jdt <. and f IYi(t) dt < i. i = 1, 2.
0:1-6

Since the yi's are in DI. they are bounded on the interval [6, 1-6].

Define

-..................

,'.... . . . . . . .
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(t) = ~~Y(s)dsI,06 M y (t)11I 1 6 (t)

L1 6~ )

Then YiE ED, iY, nd E We also have

61

11yC~y11l fly. -YJl f ly. -yl < c, i 1 , 2.
0 E 1-6 l

Hence, for sufficiently small E. y~c c D, n A. It now follows

from Theorem 2.9 that 0(y2 ) 2: *(yl). Since *is a continuous

functional, we obtain that *(y2) a 0(yl) by letting c -~0. This

completes the proof.

The following lemma is used to prove Theorem 2.12, which is

an analogue of Theorem 2.10 for functionals on L (0,1) which are

non-decreasing with respect to the ordering of unrestricted

majorization.

2.11 Lemma. Let y1 , Y2 c LljO,l) such that Y 2  Y I1  For each

b c > 0, there exists a partition 0 <a1  < a <a <1 such that the

step functions defined by

nI
k(t)~ k~ I (t)

+ = k+Ik '[

F~-jYn(s)dj 'I[an 1) (t), i =1, 2,

* satisfy the following:
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Jij[yi,-Yijjl < E, i 1 , 2

and

(ii) 2 Y *

Proof.

Note that if yl, Y2 are continuous functions on the interval

[0,11, then (i) follows from the uniform continuity of y, and Y2 "

If yi's are not continuous on [0,1], we first approximate yi's by

continuous functions x. n [0,1] such that I.y,-x. Il < -, i 1 2.
ii

Next, we find a partition 0 < a < .. < a <1 such that the step
1 n

functions defined by

x. C(t) = Lxi (s)ds I (t)i a (O,al

n- 1 a ak+ 1 i?
+ f kl~k/ xi(s)ds I Mt

k=1 k+1[-akaka kXJ )

+ Tij[xi(s)ds Ial)(t) i = 1, 2

n

satisfy IIx-xill1 < C

Now, define the step functions yli£ y2  by

YiC (t) = Yi s I ( t) M

n-1 1 -k+l
+ -a. fY(S) d  I ((a

k=1 kl1 k [ak ks k+l

+ Yi(s)d I (t) i =1, 2.
[an,1 [a 1

--. ~~ ~ ~~ . .. .. n -° .~ ,
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Then

al

+-x'II, = F[Yi(s)cX.(s)]ds

n-1 ak+l i: :

+ I f [Yi(s)-Xi(s)ds
k=l ak

f [y.(s)-x.(s)]ds

n

< Ixi-Yji 1, i = 1, 2.

Thus

11yi-Yi,[II I lyi-xill xi-xi':cII + IIxi-Yic II

+ + c , i =1,2.

This proves the first part of the lemma.

Let y2 y. Then for any partition 0 < a, <... < a <,
Y2 n

the step functions Yi' Y2 satisfy that y2 c YI " This proves

(ii). II :

2.12 Theorem. Let A be an open convex subset of LI(O,I) and let
1

0 be a continuous functional on A such that the G~teaux differentials

(y) k 0 for y c A and h E T. Then y, Y2 c A and Y2 ,Y imply

that O(Y2) a O(yl ) .

Proof. ,'.

We shall first prove the theorem for step functions. Let

Yl' Y2 be step functions in A and y2  y. Then by Lemma 2.7,
N

= ~h. for some {hl,...,h} s T. Since A is open, for
r..

. ..
.. .- +.'.L ... 2.-_'.,.,' '.+,,- .. , . " ., .-.... .': "....,-,,.. .. " + .. . . . . . ,. . .-2.=.1,'_.. _. .
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N
sufficiently small positive 0, y6hp...,A y1+e h. are functions

in A and satisfy that

N N-1

It now follows from Lemma 2.6 that
N

O~~yl~e h * (y1+0hl) f(yl). Define

N
0 = 0{5 0:5 : *(y +e 6 h) (i) and eo= sup{B: BE 0).

Following the same argument as in the proof of Theorem 2.9, we

can show that 6 1. Hence,

N

*y) (Y Xh ) f~i)

HIn general, let y,, y2 c L1(O,l) and y2  yi. Let c > 0.

By Lemma 2.11 there exist step functions y 2  such that

Jjyr-ijj <c for i *1, 2 and y2c y1e. Since A is open, for

p sufficiently small c 1 ,y are functions in A. Thus

~ Since *is continuous, we conclude that

(2 a*(y1 ) by letting c 0. f

3. Aplications.

The inequality given in Theorem 1.4 can be reformulated as the

statement that the functional defined by

*(x) 1 1 (s)OW f logrf u(tJx dtlds
0 0

is Schur-convex. By Theorem 2.10, this is equivalent to the condition

1x) 0 x cE D., Vh c T. This condition can be verified as follows.

................
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Using Holder's inequality, we note that the function

M(a) = 1ogilulo is convex in a, and thus
:o lu 1 -

M'(x) = f u(t)V log u(t)dt/f u(t)adt
0 0

is increasing in a. Let xE D and h t T, then both x and h are

functions decreasing on their supports, and I h(t)dt = 0. This
0

implies that

(x) 1 u~t)XCS)log u(t)d ,

0
0 u(t)x(s)dt

More generally, we can replace the function u(t)x(s) by

functions of the form *(t,z) which are log convex in z for fixed

t. This is the result of Proschan and Sethuraman (1976), which

we will state below.

3.1. Theorem. Let the function (tz) on (0,1) x C-,) be a log

convex function in z for fixed t, and the partial derivative

'2 (t,z) a zh(t,z) exists. Also let sup -(tz) belong to L (0,I)

Pfor each k < ®. For any bounded measurable function x on (0,1),

define

M (x) =f log *(t,x~s))d ds. _
019

Then M is Schur-convex.

'Zp

- -. . . . . . .. . . . . . . . . . . . ..-.. . .

-:. .a~. "-,
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Proof.

If follows from Artin's Theorem (1931) that the positive linear

combination f ip(t,z)dt is log convex in z. Let x c D., and h E T, then
0

am 1j7 V f2 (t,x(s))dt
r'01 h(s)ds 0,

0f*(t,x(s))dt

0

which implies that M is Schur-convex.

'.°

Next, we shall study an application of unrestricted majorization

p to peakedness ordering of symmetric distributions.

Let X and Y be random variables possessing densities symmetric

about zero. According to the definition of peakedness given by

Birnbaum (1948), X is more peaked than Y, (X Y in symbols), if

P(X !< t) P(Y :5 t) for all t : 0. Let f and g be the densities of

p

p p

X f and Yo ATns9 the ando X Y i s relt ane

combinaon i(tnte islgcov0in, etx-).adh ,thn-

1 :Y n 2 ?Y 2 imply that X 1 + X2 -_ 1 +Y2* hsrsl a

be obtaired by considering certain order preserving functionals. We

first introduce some simplifying notations.

For s >0, define

Xs (2{  x  < s)

and, for a symmetric function h, define

h(sx) p (h*X )(X)

-fh(x-y)X (y)dy,
S

. °

fistitrduesoe iplfyn notaion.... ...-...
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and

h(s,0) =fh(-y)X (y)dy
S

=fh(y)x (y)dy.
s

Note that

Vh~xsO- h(x-s,O)] is s < X

h(s,x) = !h(x+s,o)+ h(-x~s,O)I if -s !5 x 5s,

h(h(-x+s,O) - h(-x-s,O)1 if x < -s.

We need the following lemmna.

3.2. -Lemma-. Let C 1 h: h symmetric and h(s,0) 0 fir all s > 01.

Let g be symmetric and decreasing on (0,-) . Then h * C for allI

Ii C, i.e, (h*g*X5 )(0) >_ 0 for h EC and s > 0.

Proof.

Let h c C and s > 0. Then

(h~g~x ) (0) f (h*x ) (x)g(-x)dx
s s

=fh(s,x)g(-x)dx

= {f[h(x+s,0) -h(x-s,0)lg(x)dx
x>S

+ fj [h(x+s,O) - h(-xis,0)]g(x)dx

+I f h(-x~s,O)- h(-x-s,0)1g(x)dx}
x<-s

Vf h(x+s,O)g(x)dx+ f h(-x+s,O)g(x)dx
Lx>-s xcs

- f h(-xs,O)g(x)dx -f h(x-s,O)g(x)d]
x<-S x>s j]
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Let y = x +s in the first integral, y = -x+ s in the second integral,

y = -x-s in the third integral and y = x-s in the fourth integral.

We get

(h*g*xs)(0) f Fi h(y,O)g(y-s)dy
[y>0

+ f h(y,O)g(-y+s)dy- f h(y,O)g(-y-s)dy
y>O y>O

-
f h(yO)g(y+s)dyj.

By the symmetry of g,

(h*g*x s)(O) = f h(y,O)[g(y-s) -g(y+s)]dy.
y>O

Since h(y,O) a 0 for all y > 0, and g(y-s)- g(y+s) > 0 for y > 0

and s > 0, we conclude that (h*g*xs)(0) a 0. 0.

We may now obtain the following result.

3.3. Theorem. Let X1, X2 , Y1, Y2 be independent symmetric random

variables on (-1,1) with densities fl, f2' g1 ' g2 respectively.

P
Let f1 - g2 be non-increasing on (0,1). Let X. p Yi. for i = 1, 2.

P
Then X1 + X2 > 1 + Y 2"

Proof.

P
We will first establish that XI +X 2  X +Y 2

Fix f For each f c LI(0,1), let fs be the symmetric function

V1

on (-1,1) defined by

fs(t) = f(t).

° . . ". . -
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For each s > 0, define a functional on L (0,1) by

O =f ffl(1x14.x2J 5s)fi(xl)fS(x2 )dxidx2 '

Let T(0,1) be the class of nonnegative functions u on (0,1) with

fu(t)dt 2 ~. Note that for f c T(0,1),
0

Os()= P(IX 1 +Z15S),

where X.Z are independent random variables with densities fl, f5

respectively.

We shall show that for each s > 0, * is non-decreasing with

respect to the ordering of unrestricted majorization on T(0,I). Let

s > 0. Let f c T(0,1) and h c T. Then,

= hf rm 10 ffud1xl+x2 1 !5S f1(x1 S + Oh S(x2)]

f 1 (x 1)f S(x2)}x 1dx 2

= II+X 21 5 s) fi1(xl) hS(x2 )dxldx2

= (f *hs*x)(0).

Since h E T, h S(t,O0) t 0 for all t > 0. By Lemma 3.2,

(f1*hs*xs)(0) ? 0. It now follows from Theorem 2.12 that 0 i s

nondecreasing with respect to the ordering of unrestricted

majorization on T(0,1).

Not2 -ta X Y2 implies that f2  g when these are con-

sidered as elements of T(0,1). We now have

Pd1+ 21 !5 s) Os (f 2)

=P(1X I+Y 21 !5S)' for all s >0.
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Thus X X 1 Y 2  Similarly, we can establish that
p p

x Y2 Y +Y2  HenceX+ Y+Y1 '1 ~2 1 ~2* I
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